Before diving into treatment technologies, we recommend reading the first article in this series, where we explore what PFAS are and their devastating environmental and health impacts.

PFAS (per- and polyfluoroalkyl substances) are a group of synthetic chemicals widely used in industrial and consumers products. Due do their persistence and resistance to degradation, they accumulate in the environment and pose significant health risks. Addressing PFAS contamination requires a combination of well-established and emerging treatment technologies that focus on treatment, and increasingly, destruction.

Mature PFAS treatment technologies

Several well-established technologies are currently used for PFAS removal, including:

  • Granular Activated Carbon (GAC): One of the most studied methods for removing PFAS, commonly used in drinking water treatment. It helps absorb organic compounds, as well as taste, odor, and synthetic chemicals. GAC works well for longer-chain PFAS like PFOA and PFOS but is less effective for shorter-chain ones like PFBS and PFBA, which don’t adsorb as easily.
  • Anion Exchange Resins (AER): They are like tiny magnets that attract and hold onto impurities, preventing them from passing through the water system. Negatively charged PFAS are attracted to the positively charged anion resins. This method can treat almost all PFAS chain lengths but is more expensive than GAC.
  • Nanofiltration or Reverse Osmosis Membranes: High-pressure membrane filtration systems, i.e. nanofiltration and reverse osmosis, have been highly effective in eliminating over 90% of PFAS, including short-chain compounds.

Emerging PFAS treatment technologies

A few new innovative technologies are being developed to enhance PFAS removal efficiency:

  • Selective Absorbents: Companies like Puraffinity are pioneering precision technologies to target PFAS removal. Their Puratech absorbent solution is designed to integrate seamlessly into existing treatment systems and can be tailored to capture specific PFAS compounds.
  • Foam Fractionation: Oxyle has developed a multi-stage foam fractionation, catalytic destruction, and machine learning monitoring process. This method has shown to eliminate over 99% of PFAS.

While these technologies improve PFAS capture, they do not destroy the compound. This limitation has driven interest in developing destruction technologies.

Emerging PFAS destruction technologies

Unlike traditional removal methods, destruction technologies aim to completely break down PFAS compounds rather than simply capture them. While holding promise, these technologies are still energy-intensive and costly.

  • Supercritical Water Oxidation (SCWO): This oxidation process converts organic contaminants into water, carbon dioxide, and inert mineral residue. 347Water has developed AirSCWO systems, which have been proven effective in destroying PFAS-laden ion exchange resins.
  • Electrochemical Oxidation: This technique is an electrochemical reaction that degrades PFAS compounds on a large scale while producing little to no waste, making it a potential solution for large-scale PFAS degradation.

Additionnally, researchers are working on next-generation PFAS destruction technologies such as low-temperature mineralization, plasma technology, and sonolysis.

Destruction technologies require high PFAS concentrations to be effective and tend to be energy-intensive, making them less suitable for diluted waste streams. Furthermore, these technologies are quite immature, requiring validation before large-scale deployment. To address these challenges, technology providers have been exploring hybrid solutions that combine both removal and destruction methods to provide a holistic solution. For instance, Gradiant has developed a technology that enables on-site PFAS removal and destruction, eliminating the need for waste handling, landfilling, or incineration.

 

3 startups to draw inspiration from

This week, we identified three startups that we can draw inspiration from: Oxyle, Gradiant, Puraffinity.

Oxyle

A Swiss start-up that developed a technology which is claimed to have over 99% removal of PFAS with lower energy use compared to traditional methods. The three-stage process involves foam fractionation, catalytic destruction, and machine learning monitoring.

Read more

Gradiant

A U.S.-based water and wastewater treatment solutions provider, Gradiant has developed ForeverGone, a technology that is capable of removing and destroying PFAS on site, without the need for waste handling, landfilling, or incineration. It is different from conventional solutions such as granular activated carbon (GAC) and ion exchange

Read more

Puraffinity

A UK-based start-up which focused on developing precision technologies for the removal of PFAS from water. Puraffinity has developed an absorbent solution called Puratech, which integrates perfectly into existing water treatment systems and can be adapted to target specific PFAS compounds.

Read more

Interested in a startup landscape or in an insights report?

Please fill out our contact form so that we can get back to you very quickly with our product offer.

Want to subscribe to our 123Fab?

Fill out our form to receive the latest insights into your inbox.